
Feature Toggles
and Graphs

Tim Retout
London Perl Workshop, 2014-11-08

Who am I?

● Tim Retout <tim@retout.co.uk>
● Development Manager at CV-Library
● CV-Library has lots of users, and releases

lots of features
● Yes, we’re hiring

mailto:tim@retout.co.uk

tl;dr: Improve your release process

Releasing features to all users at once is risky.

Do it a bit at a time; and get feedback.

1. Feature
Toggles

Do it a bit at a time...

Feature Toggles

● a.k.a. flippers, switches, etc.
● Lots of big tech companies use them
● Make a decision at runtime about whether

to enable a feature - and don’t embed the
decision in the code

● Talk to a database (e.g. Redis) which stores
information about when to turn on a feature

Downsides of Feature Toggles

● Some more complexity
● Code duplication if comparing old/new code
● Testing impact - combinatorial explosion
● Runtime performance impact (be careful)
● Must remember to go in and clean up old

code once toggle is no longer needed

Upsides of Feature Toggles

● If used correctly, we can reduce deployment
risks:
○ Avoid complex merges
○ Roll out code to a percentage of users
○ Performance testing on real hardware
○ Quick rollback if there are problems

● More flexible than alternatives involving
releasing to a percentage of machines

Toggle (on CPAN)

● Written and used at CV-Library
● Stolen Borrowed from Ruby (rollout)

In your initialization code

Give Toggle a data store:

my $redis = Redis->new();
my $toggle = Toggle->new(store => $redis);

(You do use dependency injection, right?)

Data store

Implement key/value API like Redis. Stored
internally as percentage/user/group:

chat => "10|tim,bob|staff"

Looks a bit odd, but requires only one row
lookup per feature, which keeps it fast.

UI for toggling

Currently no pretty UI, although there's a Ruby
one available for porting.

Toggle implements the required methods for
making a user interface, however.

Rollout UI

Around your feature code

if ($toggle->is_enabled('chat')) {
 # Code for cool new chat feature
}

This is probably not useful enough - it gets
more interesting if you can toggle per user.

Around your feature code

if ($toggle->is_enabled('chat', $user)) {
 # Code for cool new chat feature
}

Note that no decision about $user is made
here - just use the result from Toggle.

Use Case: staff testing

$toggle->add_group(staff => sub {
 my $user = shift;
 return $user->admin == 1;
});

Then add "staff" group in DB.

Use Case: incremental rollout

● Enable for 1% of users in DB, then increase
percentage as you gain confidence.

● Uses a hash of $user->id to control
percentage; once a user gets a feature, they
keep the feature.

Use Case: quick rollback

● Just set percentage to 0 in DB.
● Takes effect instantly; no deployment

required.

Use Case: “Labs” experiments

● No reason to use Toggle here, unless you
are planning to release to all users later?

● But if you do, create a group as before, and
check whether user has opted in.

● Toggle supports adding user ids directly in
its store, but this won't scale well.

2. Graphs

...and get feedback

Graphs

“You need more monitoring”
-- Me, repeatedly, since 2010 or so

● Near-realtime
● 10s resolution
● Application-level and server-level

Graphception

Statsd and Graphite

● Add code in your application to send UDP
packets to statsd

● Statsd aggregates packets and updates
Graphite (over TCP) every 10s

● Graphite lets you easily graph all the data

Using statsd

● Grab a CPAN module like Net::Statsd
● Sprinkle counters and timing all over code
● Suddenly you can see what’s happening on

your platform!

generate name at runtime
inc("foo.bar.$baz");

Homepage median server response time

Delete cron script that restarted
memcached every 2 hours

Vastly speed up
template processing

job view - median page load time

What’s this? No idea, but
at least we know it
happened!

job view - 90th percentile load time

Looks even worse
at 90th percentile

job view - median (last 24 mins)

Median is under 150ms

job view - 90th percentile times (last 24 mins)

Same time period has spikes
at 90th percentile

job view - with deployment times

Job Applications (24hrs)

Use Case: A/B testing

● Toggle 0.02 added variant support
● Plot relevant graphs for A/B

Use Case: performance testing

● Difficult to get realistic performance
numbers until running on production

● Put a small percentage of users through
new code path, and measure impact

Use Case: degrade under load

● Measure error rate from non-critical services
● If rate exceeds a threshold,

programmatically disable that feature

https://github.com/jamesgolick/degrade

https://github.com/jamesgolick/degrade
https://github.com/jamesgolick/degrade

Use Case: dat-science

● Rewriting a code path?
● For a small percentage of users, try both

paths and throw the new one away
● Graph timings and count result differences

https://github.com/github/dat-science

https://github.com/github/dat-science
https://github.com/github/dat-science

Conclusions

Think about risks; work to reduce risks in your
development processes.

Graphs are cool.

Everyone should use Toggle.

Questions?

● Do you already do something better? :)
● Alternatively, chat to me at one of the coffee

breaks, or ask via email.
● Source is on CPAN and Github.

